I<+>2<+>C, Teil 10: Bodenfeuchtigkeit, Helligkeit und Temperatur messen

© Robert Byron, 123RF

Wetterfühler

Empfindliche Pflanzen brauchen die passende Pflege. Mithilfe eines entsprechenden Sensors werten Sie die jeweiligen Parameter auf dem Raspberry Pi aus.

Wer empfindliche und unter Umständen teure Pflanzen in seinem Garten arrangiert, sorgt sich oft um die optimalen Bedingungen. Ein Sensor liefert alle relevanten Daten, die Sie brauchen, um die Gewächse optimal zu pflegen. Das I2C-Modul misst Bodenfeuchte, Helligkeit und Temperatur und überträgt die Werte über den entsprechenden Bus.

Der Sensor für diesen Workshop selbst hat keine Kennung: Es handelt sich um einen ATTINY44A-Mikrocontroller, der auf einer Platine verbaut ist. Auf diesem läuft ein Programm, das die Messwerte ermittelt. Über den I2C-Bus lesen Sie diese vom Raspberry Pi aus einfach ein. Alle dazu nötigen elektronischen Komponenten befinden sich auf einer (bis auf die Kontakte) wasserdicht beschichteten Platine.

Sensor

Zu unserem Sensor mit dem sinnigen Namen Chirp – es handelt sich um quelloffene Hardware — gibt es kein Datenblatt im Internet. Daher liefert die Tabelle "Sensordaten" die wichtigsten technischen Daten. Am I2C-Bus belegt der Sensor in der Voreinstellung die Adresse 0x20h. Es besteht aber die Möglichkeit, die Adresse softwareseitig zu ändern. Auf der Chirp-Homepage [1] finden sich noch weitere interessante Informationen, bei Bedarf bestellen Sie den Messchip online [2].

Sensordaten

I2C-Adresse

0x20h

Betriebstemperatur

0 bis 85 Grad Celsius

Versorgungsspannung

3,3 bis 5 Volt

Stromverbrauch

Leerlauf bei 5 Volt

1,1 mA

Leerlauf bei 3,3 Volt

0,7 mA

Messen bei 5 Volt

14 mA

Messen bei 3,3 Volt

7,8 mA

Kontinuierliches Messen bei 5 Volt

4,5 mA

Kontinuierliches Messen bei 3,3 Volt

2,8 mA

Sie schließen den Sensor eins zu eins seiner Beschriftung entsprechend an den Raspberry Pi an (Tabelle "Verbindung"). Zusätzliche Bauteile benötigen Sie nicht, da der Raspberry Pi den I2C-Bus bereits terminiert. Daher sieht unser Testaufbau diesmal sehr übersichtlich aus (Abbildung 1)

Verbindung

Sensor

RasPi

VCC

3,3 Volt

GND

GND

SDA

SDA

SCL

SCL

Abbildung 1: Der Testaufbau fällt bei diesem Baustein simpel aus, da Sie keine weiteren Elemente mehr benötigen, um den Sensor in Betrieb zu nehmen.

Testumgebung

In den letzten Teilen dieser Reihe kam immer eine Java-Umgebung zum Einsatz, dieser Teil baut nun auf C-Programmen auf. Dafür richten Sie sich eine passende Umgebung ein. Im ersten Schritt laden Sie das aktuelle Raspbian "Jessie" Lite herunter und schreiben es auf eine SD-Karte. Das klappt am schnellsten direkt auf der Konsole.

Beim Befehl dd geben Sie dann für den Parameter of das passende Gerät an (Listing 1, letzte Zeile). Vermutlich greifen Sie auf ein neueres Image als das von uns verwendete 2016-03-18 zurück – in diesem Fall passen Sie den Namen des Images beim Parameter if ebenfalls an. Jetzt stecken Sie die Karte in den RasPi und booten diesen. Um problemlos über das Netzwerk auf dem Mini-PC zu arbeiten, aktivieren Sie via raspi-config den SSH-Daemon, um später komfortabel per SSH auf dem RasPi zu arbeiten. Den Platz auf der SD-Karte erweitern Sie bei dieser Gelegenheit ebenfalls.

Aktivieren Sie außerdem unter Advanced Options die I2C-Schnittstelle, sonst bleibt die Kommunikation recht einseitig. Falls Sie tatsächlich noch nie mit raspi-config gearbeitet haben, finden sich im Internet Anleitungen dazu.

Listing 1

 

$ wget https://downloads.raspberrypi.org/raspbian_lite_latest
$ unzip raspbian_lite_latest
$ sudo dd if=2016-03-18-raspbian-jessie-lite.img of=Gerät

Diesen Artikel als PDF kaufen

Express-Kauf als PDF

Umfang: 5 Heftseiten

Preis € 0,99
(inkl. 19% MwSt.)

Raspberry Pi Geek kaufen

Einzelne Ausgabe
 
Abonnements
 
TABLET & SMARTPHONE APPS
Bald erhältlich
Get it on Google Play

Deutschland

Ähnliche Artikel

Aktuelle Ausgabe

02/2019
Neue Energien

Diese Ausgabe als PDF kaufen

Preis € 9,99
(inkl. 19% MwSt.)

Stellenmarkt

Neuigkeiten

  • Scheibchenweise

    Zu den Stärken von Sonic Pi gehört es, mit wenigen Zeilen Code Samples dynamisch auszuwählen und zu zerlegen.

  • Unter Strom

    Für einen kleinen Spannungsmesser wie den INA3221 gibt es viele Einsatzmöglichkeiten. Wir zeigen, wie Sie den flexiblen Baustein richtig verdrahten.

  • Vermittlungsstelle

    Fischertechnik-Modelle bieten sich zum Fernsteuern an. Mit dem Ftduino schlagen Sie die Brücke zwischen dem RasPi und dem Technik-Spielzeug.

  • Durchgeschlängelt

    Mit den M0-Boards steigen Sie unkompliziert in die Welt der Mikrocontroller ein – ganz ohne C-Kenntnisse.

  • Gesiebt und gefiltert

    Filter und Werbeblocker einzurichten ist besonders auf Smartphones aufwendig. Den eBlocker hingegen schließen Sie einfach nur an Ihren Router an.

  • Es werde Licht

    Wollen Sie bei beginnender Dämmerung nicht ständig die Helligkeit der heimischen Beleuchtung nachregeln, überlassen Sie das einfach einem RasPi – der macht es automatisch.

  • Energiekontrolle

    Der Gesetzgeber erschwert das Direktvermarkten von Strom durch technische Hürden: So muss sich die Einspeisung etwa aus der Ferne abschalten lassen. Der RasPi löst das Problem.

  • H<->2<->-Power

    Gilt es, Energie aus einer regenerativen Quelle zu speichern, erweist sich die Kombi aus einer Brennstoffzelle und dem RasPi als ideale Lösung.

  • Kleine Wolke

    Lokale Cloud-Lösungen im Heimnetz finden immer mehr Nutzer. Mit dem RasPi und Seafile haben Sie eine Lösung zur Hand, die selbst professionellen Ansprüchen genügt.

  • Planvoll verdrahtet

    Die Leiterplattendesign-Software KiCad leistet trotz einer etwas umständlichen Bedienung auch Hobbybastlern gute Dienste.